49 research outputs found

    Unikernels: the next stage of Linux’s dominance

    Full text link
    Unikernels have demonstrated enormous advantages over Linux in many important domains, causing some to propose that the days of Linux's dominance may be coming to an end. On the contrary, we believe that unikernels' advantages represent the next natural evolution for Linux, as it can adopt the best ideas from the unikernel approach and, along with its battle-tested codebase and large open source community, continue to dominate. In this paper, we posit that an upstreamable unikernel target is achievable from the Linux kernel, and, through an early Linux unikernel prototype, demonstrate that some simple changes can bring dramatic performance advantages.Accepted manuscrip

    E-WarP: a system-wide framework for memory bandwidth profiling and management

    Full text link
    The proliferation of multi-core, accelerator-enabled embedded systems has introduced new opportunities to consolidate real-time systems of increasing complexity. But the road to build confidence on the temporal behavior of co-running applications has presented formidable challenges. Most prominently, the main memory subsystem represents a performance bottleneck for both CPUs and accelerators. And industry-viable frameworks for full-system main memory management and performance analysis are past due. In this paper, we propose our Envelope-aWare Predictive model, or E-WarP for short. E-WarP is a methodology and technological framework to: (1) analyze the memory demand of applications following a profile-driven approach; (2) make realistic predictions on the temporal behavior of workload deployed on CPUs and accelerators; and (3) perform saturation-aware system consolidation. This work aims at providing the technological foundations as well as the theoretical grassroots for truly workload-aware analysis of real-time systems. We provide a full implementation of our techniques on a commercial platform (NXP S32V234) and make two key observations. First, we achieve, on average, a 6% overprediction on the runtime of bandwidth-regulated applications. Second, we experimentally validate that the calculated bounds hold if the main memory subsystem operates below saturation.https://cs-people.bu.edu/rmancuso/files/papers/EWarP_RTSS20_final.pdfAccepted manuscrip

    Operational semantics for signal handling

    Full text link
    Signals are a lightweight form of interprocess communication in Unix. When a process receives a signal, the control flow is interrupted and a previously installed signal handler is run. Signal handling is reminiscent both of exception handling and concurrent interleaving of processes. In this paper, we investigate different approaches to formalizing signal handling in operational semantics, and compare them in a series of examples. We find the big-step style of operational semantics to be well suited to modelling signal handling. We integrate exception handling with our big-step semantics of signal handling, by adopting the exception convention as defined in the Definition of Standard ML. The semantics needs to capture the complex interactions between signal handling and exception handling.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    Integrating DGSs and GATPs in an Adaptative and Collaborative Blended-Learning Web-Environment

    Full text link
    The area of geometry with its very strong and appealing visual contents and its also strong and appealing connection between the visual content and its formal specification, is an area where computational tools can enhance, in a significant way, the learning environments. The dynamic geometry software systems (DGSs) can be used to explore the visual contents of geometry. This already mature tools allows an easy construction of geometric figures build from free objects and elementary constructions. The geometric automated theorem provers (GATPs) allows formal deductive reasoning about geometric constructions, extending the reasoning via concrete instances in a given model to formal deductive reasoning in a geometric theory. An adaptative and collaborative blended-learning environment where the DGS and GATP features could be fully explored would be, in our opinion a very rich and challenging learning environment for teachers and students. In this text we will describe the Web Geometry Laboratory a Web environment incorporating a DGS and a repository of geometric problems, that can be used in a synchronous and asynchronous fashion and with some adaptative and collaborative features. As future work we want to enhance the adaptative and collaborative aspects of the environment and also to incorporate a GATP, constructing a dynamic and individualised learning environment for geometry.Comment: In Proceedings THedu'11, arXiv:1202.453

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    Parallel Programming with Transactional Memory

    No full text

    What Every Programmer Should Know About Memory

    No full text
    As CPU cores become both faster and more numerous, the limiting factor for most programs is now, and will be for some time, memory access. Hardware designers have come up with ever more sophisticated memory handling and acceleration techniques–such as CPU caches–but these cannot work optimally without some help from the programmer. Unfortunately, neither the structure nor the cost of using the memory subsystem of a computer or the caches on CPUs is well understood by most programmers. This paper explains the structure of memory subsystems in use on modern commodity hardware, illustrating why CPU caches were developed, how they work, and what programs should do to achieve optimal performance by utilizing them

    Parallel programming with transactional memory

    No full text
    corecore